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Abstract

In this chapter, by using the Kolmogorov-Arnold-Moser (KAM) theory, we investigate the stability
of the positive elliptic equilibrium point of the difference equation

xn+1 =
Ax3

n +B

axn−1
, n = 0, 1, 2, . . .

where the parameters A,B, a and the initial conditions x−1, x0 are positive numbers. The specific
feature of this difference equation is the fact that we were not able to use the invariant to prove
stability or to find feasible periods of the solutions ([1]).
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1 Introduction and Preliminaries

We consider the dynamics of the following equation

xn+1 =
Ax3

n +B

axn−1
, n = 0, 1, . . . (1)

where the parameters A,B, a and the initial conditions x−1, x0 are positive numbers. Equation (1)
is a special case of the more general equation

xn+1 =
Axk

n +B

axn−1
, n = 0, 1, . . . , (2)

where k is a fixed number of the set {1, 2, 3, ...}. Note that equation (2) has very interesting special
cases as Lyness’ equation (for k = 1, A = a = 1, see [2, 3, 4]) or the equation

xn+1 =
Ax2

n + F

exn−1
, n = 0, 1, . . . (3)

which was studied in [5]. These equations were considered by either the Kolmogorov-Arnold-Moser
(KAM) theory or combination of algebraic and geometric techniques. The second technique was
always based on the existence of invariants, see [2, 6, 7, 8]. For instance the Lyness’ equation

xn+1 =
xn +A

xn−1
, n = 0, 1, . . . (4)
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introduced in [2] and first studied systematically in [4] has an invariant of the form

I(xn, xn−1) =

(
1 +

1

xn

)(
1 +

1

xn−1

)
(A+ xn + xn−1), n = 0, 1, . . . (5)

with the property that I(xn+1, xn) = I(xn, xn−1), n = 0, 1, . . .. The algebraic and geometric
analysis of invariant (5) initiated in [4] has provided precise description of all feasible periods of
equation(4) and the chaotic solutions of equation(4). These techniques were successfully applied to
the corresponding equation with the periodic coefficients with some periods that allow applications
of such techniques. See [8, 9, 10].

However, but in the case of the equation (3) it was not possible to find an invariant of this equation
which generates the area preserving map and the only available technique seems to be the KAM
theory (similar as in [1, 5, 11, 12, 13, 14, 15, 16]). It seems that equation (1) is of this type as we
were not able to find any invariant. Also, the simulations and visualizations of the orbits of this
equation do not indicate the existence of some invariant (see Fig. 1). Note that the paper [17] gives
some effective tests for difference equation to have a continuous invariant.

In this chapter, we will show that in equation (2) there exist the same situations with the number
equilibrium points and their stability properties as in equation (1). Also, we will show that equation
(1) is more complicated than equation (3). As we can see in [5], equation (3) either has no positive
equilibrium points or has a unique positive equilibrium, which is non-hyperbolic of the elliptic
type and which is stable. On the other hand, for equation (1) we have three qualitative distinct
situations: the equation has no positive equilibrium points, or has a unique positive equilibrium
point which is non-hyperbolic of parabolic type, or has two positive equilibrium points: one of these
is a saddle and the other is non-hyperbolic of the elliptic type.

Indeed, by substituting

xn =

√
B

a
wn

in (1) we obtain

wn+1 =

A
a

√
B
a
w3

n + 1

wn−1
,

i.e. (for α = A
a

√
B
a
)

wn+1 =
αw3

n + 1

wn−1
. (6)

The equilibrium points of equation (6) are the positive solutions of the equation

w =
αw3 + 1

w

or equivalently
αw3 − w2 + 1 = 0. (7)

Set g (w) = αw3 − w2 + 1. It is obvious that the function g has the local maximum gmax = 1 for
w = 0 and has a local minimum for w = 2

3α
. Also, we see that equation (7):

a) has no positive roots if g
(

2
3α

)
> 0, or equivalently if α > 2

3
√

3
,

b) has only one positive root if g
(

2
3α

)
= 0, or equivalently if α = 2

3
√
3
,

c) has two positive roots if g
(

2
3α

)
< 0, or equivalently if 0 < α < 2

3
√

3
.

This means that equation (6):
a1) has no positive equilibrium points for α > 2

3
√
3
,

b1) has only one positive equilibrium point E = E1 = E2 =
√
3 for α = 2

3
√

3
,
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c1) has two positive equilibrium points E1 and E2 (1 < E1 < 2
3α

and E2 > 2
3α

>
√
3) for

0 < α < 2

3
√

3
.

We will show that the equilibrium point E = E1 for 0 < α < 2

3
√

3
is an elliptic point of an area

preserving map since eigenvalues of the JT (E1) form a purely imaginary, complex conjugate pair
λ, λ, see [3, 18]. This means that equation (6) has very specific dynamics and that the KAM theory
is the appropriate tool to investigate the dynamics of the equation since we will prove that the map
T corresponding to equation (6) is an area preserving map.

An area preserving map T is a map that preserves the area of any measurable planar region S ⊂ R2

under the forward iterates of the map, that is, the area of T (S) equals the area of S. The formal
definition is as follows, see [3].

Definition 1.1. A map T : R2 → R2 is said to be area preserving if its Jacobian matrix JT satisfies

det JT (x) = 1 at every point x of domain of T.

The stability of the elliptic type equilibrium point is established by simplifying the nonlinear terms
trough appropriate coordinate transformations and bringing them into so-called normal forms. One
well-known normal form is Birkhoff normal form, see [3].

Now, we present some the basic results about Birkhoff normal forms and the KAM theory. The
next result gives normal form of an equation with an elliptic fixed point, see [3, 13, 18, 19, 20].

Theorem 1.1. (Birkhoff Normal Form) Let T : R2 → R2 be an area-preserving Cn map (n-times
continuously differentiable) with a fixed point at the origin whose complex-conjugate eigenvalues λ
and λ are on the unit disk (elliptic fixed point). Suppose there exists an integer l such that

4 ≤ l ≤ n+ 1

and suppose that the eigenvalues satisfy

λk ̸= 1 for k = 3, 4, ..., l.

Let r = [ l
2
] be the integer part of l

2
. Then there exists a smooth function g(z, z) that vanishes with

its derivatives up to order r − 1 at z = 0, and there exists a real polynomial

α(ω) = α1ω + α2ω
2 + ...+ αrω

r

such that the map T can be reduced to the normal form by suitable change of complex coordinates

z → T (z, z) = λzeiα(zz) + g(z, z).

In other words the corresponding system of difference equations

xn+1 = T (xn)

can be reduced to the form(
sn+1

tn+1

)
=

(
cosω − sinω
sinω cosω

)(
sn
tn

)
+

(
Ol

Ol

)
(8)

where

ω =

M∑
k=0

γk(s
2
n + t2n)

k, M =

[
l

2

]
− 1. (9)

Here Ol denotes a convergent power series in sn and tn with terms of order greater than or equal
to l which vanishes at the origin and [x] denotes the least integer greater than or equal to x.
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The numbers γ1, ..., γk are called twist coefficients. Using Theorem 1 we can state the main stability
result for an elliptic fixed point, known as the the KAM Theorem (or Kolmogorov-Arnold-Moser
Theorem), see [3, 13, 18, 20].

Theorem 1.2. (KAM Theorem) Let T : R2 → R2 be an area-preserving map with an elliptic fixed
point at the origin satisfying the conditions of Theorem 1. If the polynomial α(|z|2) is not identically
zero, then the origin is a stable equilibrium point. In other words if for some k ∈ {1, ...,M} we have
γk ̸= 0 in (9), then the origin is a stable equilibrium point.

Remark 1.1. ([5]) Consider an invariant annulus Aε = {z : ε < |z| < 2ε} in a neighborhood of the
elliptic fixed point, for ε a sufficiently small positive number. Note that the linear part of normal
form approximation leaves invariant all circles. The motion restricted to each of these circles is a
rotation by some angle, see Theorem 2.28 in [3]. Also note that if at least one of the twist coefficients
γk is non-zero, the angle of rotation will vary from circle to circle. A radial line through the fixed
point will undergo twisting under the mapping. The KAM theorem says that, under the addition of
the remainder term, most of these invariant circles will survive as invariant closed curves under the
original map [3, 13, 18]. Precisely, the following result holds, see [3, 13, 18].

Theorem 1.3. Assuming that α(zz) is not identically zero and ε is sufficiently small, then the map
T has a set of invariant closed curves of positive Lebesgue measure close to the original invariant
circles. Moreover, the relative measure of the set of surviving invariant curves approaches full
measure as ε approaches 0. The surviving invariant closed curves are filled with dense irrational
orbits.

The following is a consequence of Moser’s twist map theorem [13, 18, 20].

Theorem 1.4. Let T : R2 → R2 be an area-preserving diffeomorphism, and (x, y) a nondegenerate
elliptic fixed point. There exist periodic points with arbitrarily large period in every neighborhood of
(x, y).

Indeed, Theorem 1.3 implies that arbitrarily close to the fixed point there are always infinitely
many gaps between consecutive invariant curves that contain periodic points. Within these gaps,
one finds, in general, orbits of hyperbolic and elliptic periodic points. These facts cannot be deduced
from computer pictures. The linearized part of (8) represent a rotation for angle ω and so if ω is
rational multiple of π every solution is periodic with same period while if ω is irrational multiple
of π there will exist chaotic solutions. In this paper we will not go into detailed study of these
behaviors, as we were not able to find any continuous invariant for equation (6).

2 KAM Theory Applied to Equation (6) for α ∈
(
0, 2

3
√
3

)
In this section, using KAM theorem, we will prove that the equilibrium point E = E1 for 0 < α <

2

3
√
3
is stable and that there exist an infinite number of periodic solutions.

Theorem 2.1. i) If α = 2

3
√

3
, then equation (6) has a unique positive equilibrium point Enh =

√
3

which is non-hyperbolic of the parabolic type.

ii) If α ∈
(
0, 2

3
√

3

)
, then equation (6) has two positive equilibrium points:

a) E = E1, 1 < E < 2
3α

, which is non-hyperbolic of the elliptic type and which is stable,

b) E2 > 2
3α

>
√
3, which is a saddle.
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Proof. For equilibrium point E of equation (6) and for 0 < α < 2

3
√

3
we use the substitution

xn = ln
wn

E
,

yn = xn−1,

to transform equation (6) into the system

xn+1 = −yn + ln
(
αE3e3xn + 1

)
− 2 lnE

yn+1 = xn.

}
n = 0, 1, 2, . . . . (10)

Then the equilibrium point E is transformed into (0, 0).

The map T corresponding to the system (10) is of the form

T

(
x
y

)
=

(
−y + ln

(
αE3e3x + 1

)
− 2 lnE

x

)
,

and the Jacobian matrix of the map T at the point (x, y) has the form

JT (x, y) =

 3αE3e3x

αE3e3x + 1
−1

1 0

 .

It is easy to see that
det JT (x, y) = 1,

i.e. the map T is an area preserving map. It means that we can apply KAM theory to the system
(10).
Notice that

J0 = JT (0, 0) =

(
3αE −1
1 0

)
.

The characteristic equation at (0, 0) is

λ2 − 3αEλ+ 1 = 0,

with the characteristic roots

λ =
3αE +

√
9α2E2 − 4

2
, λ =

3αE −
√
9α2E2 − 4

2
.

For the equilibrium E = E1 = E2 =
√
3, when is α = 2

3
√

3
, we have that λ1 = λ2 = 1 (E is

non-hyperbolic equilibrium of parabolic type). In this case we can not apply the KAM theory.
If 0 < α < 2

3
√

3
, then for the equilibrium E = E1 < E2 we have that E1 < 2

3α
, which implies

4− 9α2E2
2 > 0 and

λ (E2) =
3αE2 + i

√
4− 9α2E2

2

2
, λ (E2) =

3αE2 − i
√

4− 9α2E2
2

2
.

It means that E is non-hyperbolic equilibrium of elliptic type and in this case we can apply the
KAM theory.

Similarly, for the equilibrium E2 we have that E2 > 2
3α

, which implies 4− 9α2E2
3 < 0 and

λ (E3) =
3αE3 +

√
9α2E2

3 − 4

2
>

3αE3

2
> 1,

λ (E3) =
3αE3 −

√
9α2E2

3 − 4

2
<

3αE3

2
< 1,
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and so the equilibrium E2 is a saddle point.

Now, we apply KAM theory for the equilibrium E = E1, E1 < 2
3α

, α ∈
(
0, 2

3
√

3

)
.

Clearly |λ (E)| = 1, (λ (E))3 ̸= 1, (λ (E))4 ̸= 1 for α ∈
(
0, 2

3
√

3

)
. Indeed,

λ2 =
9

2
α2E2 − 1 +

3

2
iαE

√
4− 9α2E2,

λ3 =
9

2
αE

(
3α2E2 − 1

)
+

1

2
i (3αE − 1) (3αE + 1)

√
4− 9α2E2,

λ4 =
1

2

(
81α4E4 − 36α2E2 + 2

)
+

3

2
αE

(
9α2E2 − 2

)
i
√

4− 9α2E2.

If 3αE − 1 = 0, then it is clear that λ3 = −1, and similarly, if 9α2E2 − 2 = 0, then λ4 = −1.

Thus the assumptions of Theorem 1 are satisfied for l = 4 and we will find the Birkhoff normal
form of (10) by using the sequence of transformations described in Section 1.

First transformation:

Notice that the matrix of the linearized system at the origin is the matrix

J0 =

(
3αE −1
1 0

)
and the matrix of the corresponding eigenvectors which correspond to λ and λ of J0 is

P =

(
1 1

λ λ

)
.

In order to obtain the Birkhoff normal form of system (10) we will expand the right hand sides of
the equations of system (10) at the equilibrium point (0, 0) up to the order l − 1 = 3 and so we
obtain

xn+1 = 3(E−1)(E+1)

E2 xn − yn + 9(E−1)(E+1)

2E4

(
x2
n + 2−E2

E2 x3
n

)
+O4,

yn+1 = xn.
(11)

The change of variables [
xn

yn

]
= P

[
un

vn

]
=

[
un + vn

λun + λvn

]
transforms system (11) into

un+1 = λun + σ
(
(un + vn)

2 + 2−E2

E2 (un + vn)
3
)
+O4,

vn+1 = λvn + σ
(
(un + vn)

2 + 2−E2

E2 (un + vn)
3
)
+O4,

(12)

where

σ =
λ

λ− λ
· 9 (E − 1) (E + 1)

2E4
=

3αE+i
√

4−9α2E2

2

i
√
4− 9α2E2

· 9α
2E

=
9α

4E
√
4− 9E2α2

(√
4− 9E2α2 − 3iαE

)
.

Second transformation:

The objective of second transformation is to obtain the nonlinear terms up to order l− 1 in normal
form. The change of variables

un = ξn +

2∑
k=0

(
a2kξ

2−k
n ηk

n

)
+

3∑
k=0

(
a3kξ

3−k
n ηk

n

)
(13)
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vn = ηn +

2∑
k=0

(
a2kξ

k
nη

2−k
n

)
+

3∑
k=0

(
a3kξ

k
nη

3−k
n

)
(14)

where

a20 =
σ

λ (λ− 1)
, a21 =

2σ

1− λ
, a22 =

σ

λ
2 − λ

,

a20 =

9α

E
√

4−9E2α2

(
−
√
−9E2α2 + 4− i (3Eα− 2)

)
−4 (3Eα− 2)

,

a21 =

9α

E
√

4−9E2α2

−2 (3Eα− 2)

(√
−9E2α2 + 4− i (3Eα− 2)

)
,

a22 =

9α

2E
√

4−9E2α2

(√
−9E2α2 + 4 (3Eα− 1)− 3i (3Eα+ 1)

(
Eα− 2

3

))
−2 (3Eα− 2) (3Eα+ 1)

,

a20 + a22 =
9α

2E (3Eα− 2) (3Eα+ 1)
,

a21 + a21 =
9α

(2− 3Eα)E
,

reduces system (12) to the form

ξn+1 =
(
λξn + α2ξ

2
nηn

)
+O4,

ηn+1 =
(
ληn + α2ξnη

2
n

)
+O4,

(15)

where
α2 = 2 (a21 + a21)σ + 2 (a20 + a22)σ + (1− 2α)σ.

By using that α = E2−1
E3 , we obtain

Re (α2) =

(
18α

(2− 3αE)E
+

9α

E (3αE − 2) (3αE + 1)
+

2− E2

E2

)(
9α

4E

)
=

−9 (E − 1) (E + 1)
(
2E6 + 20E4 − 39E2 + 18

)
2E6 (4E2 − 3) (E2 − 3)

.

Third transformation:

The change of variables

ξn = sn + itn,

ηn = sn − itn,

transforms system (15) into
sn+1 = µ1sn − µ2tn +O4,
tn+1 = µ2sn − µ1tn +O4,

(16)

where
µ1 = Re (λ) + Re (α2)

(
s2n + t2n

)
,

µ2 = Im (λ) + Im (α2)
(
s2n + t2n

)
.

Since (16) can be write in the form

sn+1 = cosωsn − sinωtn +O4,

tn+1 = sinωsn + cosωtn +O4,
(17)
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where
ω = γ0 + γ1

(
s2n + t2n

)
,

then for the twist coefficients γ0 and γ1 we obtain

cos γ0 = Re (λ) =
3αE

2
=

3 (E − 1) (E + 1)

2E2
∈ (0, 1) and γ1 = −Re (α2)

sin γ0
.

System (17) is the Birkhoff Normal Form for system (11). Since 1 < E < 2
3α

implies

2E6 + 20E4 − 39E2 + 18 =
(
20E4 − 40E2 + 20

)
+ E2 + 2

(
E6 − 1

)
= 20 (E − 1)2 (E + 1)2 + E2 + 2

(
E6 − 1

)
> 0,

we obtain that γ1 ̸= 0. Therefore, the polynomial

α
(
|z|2

)
= γ0 + γ1 |z|2 = ω

is not identically zero at the origin and by KAM theorem (Theorem 1.2) equilibrium point E = E1

is stable for α ∈
(
0, 2

3
√

3

)
.

Fig. 1. Some orbits of the map T for α = 1/27 and a bifurcation diagram in
(α-x)-plane. The plots are generated by Dynamica 3 [3].

Remark 2.1. Also, the following result is based on Moser’s twist map theorem: There exist periodic
points with arbitrarily large periods in every neighborhood of E = E1. As in [5, 12, 13] we see that
the eigenvalues λ and λ at the elliptic equilibrium point E are of the form λ = e±iθ, where 0 < θ < π

2

and that the period of the motion around the equilibrium point must be q > 2π
θ

> 4. For example,
if α = 1

27
, then 2π

θ
≈ 4. 1498 so the minimal possible period for a periodic orbit in a neighborhood

of the elliptic equilibrium point is 5.

3 Symmetries

In this section, using symmetries for the map T , we will show that this map is conjugate to its inverse
trough an involution. Also, we will use time reversal symmetry method based on symmetries to
effectively find some feasible periods and corresponding orbits of the map T .

As we can see in [5, 11, 12, 13, 14], symmetries are important in the study of area-preserving maps
because they yield special dynamic behavior. A transformation R of the plane is a time reversal
symmetry for T if R−1 ◦ T ◦ R = T−1. If time reversal symmetry R satisfies R2 = id, then the
condition R−1 ◦ T ◦R = T−1 is equivalent to R ◦ T ◦R = T−1, and then T we can be write as the
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Table 1. Some periodic solutions for α = 1/27.

P Solution

5 {(4.596991833332244‘, 4.596991833332244‘), (1.0002125941776574‘, 4.596991833332244‘),
(0.22559549836806175‘, 1.0002125941776574‘), (1.0002125941776576‘, 0.22559549836806175‘),

(4.596991833332245‘, 1.0002125941776576‘)}
5 {(3.00235373720582‘, 6.003529913706053‘), (0.3335297088818277‘, 3.00235373720582‘),

(0.33352970888182726‘, 0.3335297088818277‘), (3.0023537372058158‘, 0.33352970888182726‘),
(6.003529913706047‘, 3.0023537372058158‘)}

8 {(18.225261684117154‘, 18.225261684117154‘), (12.357097172757292‘, 18.225261684117154‘),
(3.889396325232705‘, 12.357097172757292‘), (0.25727146304169984‘, 3.889396325232705‘),

(0.2572714630417‘, 0.25727146304169984‘), (3.889396325232707‘, 0.2572714630417‘),
(12.357097172757298‘, 3.889396325232707‘), (18.225261684117168‘, 12.357097172757298‘)}

16 {(0.3058158987156614‘, 0.3058158987156614‘), (3.273405005974309‘, 0.3058158987156614‘),
(7.517852116996595‘, 3.273405005974309‘), (5.112976088548907‘, 7.517852116996595‘),

(0.7915287902605214‘, 5.112976088548907‘), (0.19917302652407656‘, 0.7915287902605214‘),
(1.2637476341269824‘, 0.19917302652407656‘), (5.396067276941883‘, 1.2637476341269824‘),
(5.396067276941876‘, 5.396067276941883‘), (1.2637476341269767‘, 5.396067276941876‘),

(0.19917302652407665‘, 1.2637476341269767‘), (0.7915287902605249‘, 0.19917302652407665‘),
(5.112976088548907‘, 0.7915287902605249‘), (7.51785211699656‘, 5.112976088548907‘),

(3.2734050059742668‘, 7.51785211699656‘), (0.30581589871565623‘, 3.2734050059742668‘)}

composition of two involutions T = I1 ◦ I0, where I0 = R and I1 = T ◦ R. Note that if I0 = R is a
reversor, then so is I1 = T ◦R. Also, the jth involution, defined as Ij := T j ◦R, is also a reversor.

The sets

Sj = {(x, y)|Ij(x, y) = (x, y)}, j = 1, 2,

are invariant sets of the involution maps and they are one-dimensional sets. We call them the
symmetry lines of the map T . The following result is important for the search periodic orbits, see
[13, 21].

Fig. 2. The periodic orbits of period 5 (Magenta), period 14 (Red), period 16 (Blue),
period 32 (Black) and E (Yellow) for α = 1/27. The plot is generated by Dynamica 3

[3].
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Fig. 3. The periodic orbits of period 5 (Blue, Black), period 13 (Green, Purple), 19
(Red), 21 (Magenta), ∞ (Pink) and E (Yellow) for α = 1/27. The plot is generated by

Dynamica 3 [3].

Theorem 3.1. If (x, y) ∈ S0,1, then Tn(x, y) = (x, y) if and only if{
Tn/2(x, y) ∈ S0,1, for n even;

T (n±1)/2(x, y) ∈ S1,0, for n odd.

It means that the periodic orbits of different orders can then be found at the intersection of
the symmetry lines Sj , j = 1, 2, ... associated to the jth involution, that is, if (x, y) ∈ Sj ∩
Sk, then T j−k(x, y) = (x, y). Also, the symmetry lines satisfy the following relations: S2j+i =
T j(Si), S2j−i = Ij(Si), for all i, j. For example, for α = 1

27
in Fig. 2., we have an intersection

between the symmetry lines S0 and S14 = T 7(S0), S0 and S16 = T 8(S0) of the map T . The
intersection points of this lines correspond to the periodic orbits of period 14 and 16, respectively.
Also, see Fig. 3. for some examples of the periodic orbits of period 5, 13, 19 and 21, and one orbit
which lies on the dense closed curve.

For α ∈
(
0, 2

3
√

3

)
we use the substitution xn = wn and yn = wn−1 to transform equation(6) into

xn+1 =
αx3

n + 1

yn

yn+1 = xn

(18)

Then the map T associated to the system (18) is

T (x, y) =

(
αx3 + 1

y
, x

)
which domain is the positive quadrant Q in R2. The inverse of the map (18) is the map

T−1 (x, y) =

(
y,

αy3 + 1

x

)
.

Note that the involution R(x, y) = (y, x) is a reversor for (18):

(R ◦ T ◦R)(x, y) = (R ◦ T ) (y, x) = R

(
αy3 + 1

x
, y

)
=

(
y,

αy3 + 1

x

)
= T−1(x, y).
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So, we have that T = I1 ◦ I0, where I0(x, y) = R(x, y) = (y, x) and

I1(x, y) = (T ◦R) (x, y) =

(
αy3 + 1

x
, y

)
.

The symmetry lines corresponding to I0 and I1 are

S0 = {(x, y) : y = x}, S1 =
{
(x, y) : x =

√
αy3 + 1

}
.

See Fig. 2 and Fig. 3 for the first twelve iterations of symmetry lines S0 and S1, respectively, of
the map T for α = 1

27
(for i = 1, 2: Si-Red, T (Si)-Green, T 2 (Si)-Blue, T

3 (Si)-Black, T
4 (Si)-

Purple, T 5 (Si)-Cyan, T 6 (Si)-Brown, T 7 (Si)-Orange, T 8 (Si)-Gray, T 9 (Si)-Magenta, T 10 (Si)-
Pink, T 11 (Si)-Yellow and T 12 (Si)-Dark Red).
Periodic orbits on the symmetry line S0 with even period n are searched for by starting with points
(x0, x0) ∈ S0 and imposing that (xn/2, yn/2) ∈ S0, where

(xn/2, yn/2) = Tn/2(x0, x0).

This reduces to a one-dimensional root finding for the equation xn/2 = yn/2, where the unknown
is x0. Also, periodic orbits on S0 with odd period n are obtained by solving for x0 the equation
x2
(n+1)/2 = 1 + αy3

(n+1)/2, where

(x(n+1)/2, y(n+1)/2) = T (n+1)/2(x0, x0).

Note that, on analogous way, we can see that the next result is true.

Theorem 3.2. Assume that k ≥ 3.

i) If α > 2
k

(
k−2
k

) k−2
2 , then equation (2) has no positive equilibrium point.

ii) If α = 2
k

(
k−2
k

) k−2
2 , then equation (2) has a unique positive equilibrium E =

√
k(k−2)

k−2
point

which is non-hyperbolic of the parabolic type.

iii) If α ∈
(
0, 2

k

(
k−2
k

) k−2
2

)
, then equation (2) has two positive equilibrium points:

a) E1, 1 < E1 <
(

2
kα

) 1
k−2 , which is non-hyperbolic of the elliptic type and which is stable,

b) E2 >
(

2
kα

) 1
k−2 , which is a saddle.

4 Conclusion

In this chapter, by using the Kolmogorov-Arnold-Moser (KAM) theory, we investigate the stability
of the positive elliptic equilibrium point of difference equation (1). We showed that in equation (2)
there exist the same situations with number equilibrium points and their stability properties as in
(1). For equation (1) we had three qualitatively distinct situations: the equation has no positive
equilibrium points, or has a unique positive equilibrium point which is non-hyperbolic of parabolic
type, or has two positive equilibrium points (one of these is a saddle point and the other is non-
hyperbolic of the elliptic type). By using adequate substitution, equation (1) can be transformed to
equation (6). We showed that equilibrium point E1 is an elliptic point of an area preserving map.
This means that equation (6) has very specific dynamics and that KAM theory is an appropriate
tool to investigate the dynamics of the equation. By using three transformations we obtain Birkhoff
normal form (17) and we compute the first twist coefficient γ1 ̸= 0, which implies that equilibrium

point E1 is stable for α ∈
(
0, 2

3
√

3

)
.
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Also, we see that there exist periodic points with arbitrarily large periods in every neighborhood
of equilibrium E1, which is based on Moser’s twist map theorem. Using symmetries for the map
T we showed that this map is conjugate to its inverse trough an involution. We used time reversal
symmetry method based on symmetries to effectivelly find some feasible periods and corresponding
orbits of the map T .
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