JU UNIVERZITET U TUZLI PRIRODNO-MATEMATIČKI FAKULTET ODSJEK MATEMATIKA

Mirnes Smajilović

DIPLOMSKI RAD

Geometrijska interpretacija dinamike diferentnih jednadžbi

Tuzla, mart, 2013. godine

Mentor rada: Dr. sc. Mehmed Nurkanović, vanredni profesor Rad ima: 37 stranica Redni broj diplomskog rada:

REZIME

Cilj ovog diplomskog rada je vizualizacija dinamike diferentnih jednadžbi prvog reda i Lynessove diferentne jednadžbe.

Diplomski rad se sastoji od dva poglavlja.

Prvo poglavlje predstavlja izlaganje o dinamici jednodimenzionalnih preslikavanja. Ono pruža mnoge učinkovite testove za stabilnost fiksnih i periodičnih tačaka. Koristi se paket **Dynamica** za vizualizaciju orbita stepenastim dijagramom, vremenskim nizovima i grafikom tačaka. Osim toga, prikazan je kratak pregled o bifurkacijama i bifurkacionom dijagramu.

Drugo poglavlje sadrži neke osnovne definicije i neke poznate rezultate o stabilnosti i periodičnosti rješenja Lynessove diferentne jednadžbe

$$x_{n+1} = \frac{A + x_n}{x_{n-1}}, \quad n = 0, 1, \dots$$

Predstavljeno je korištenje paketa **Dynamica** za vizualizaciju orbita Lynessove jednadžbe kao što su fazni portret, bifurkacioni dijagram i Poincareov grafik.

SUMMARY

The goal of this work is visualization of dynamics of the first-order difference equation and Lyness' difference equation.

This work consists of two chapters.

The first chapter presents exposition of the dynamics of one-dimensional maps. It provides many effective tests for the stability of the fixed and periodic points.

It uses **Dynamica** package for visualization of orbits with stair-step diagram, time series plot and plot of points. In addition, it presents a short review of bifurcation and bifurcation diagram.

The second chapter contains some basic definitions and some known results about the stability, and the periodicity of solutions of Lyness' difference equation

$$x_{n+1} = \frac{A+x_n}{x_{n-1}}, \quad n = 0, 1, \dots$$

It presents the usage of **Dynamica** package for visualization of orbits of Lyness' equation as well phase portrait, bifurcation diagram and Poincare' plot.

Sadržaj

1	Dinamika jednodimenzionalnih diskretnih dinamičkih sistema 2			
	1.1	Pojam stabilnosti	5	
	1.2	2 Vizualizacija orbita i vremenskih nizova		
	1.3	Osjetljivost ponašanja rješenja diferentne jednadžbe	12	
	1.4	Brzina atrakcije orbita		
	1.5	Bifurkacije. Bifurkacioni dijagrami	18	
		1.5.1 Bifurkacije	18	
		1.5.2 Bifurkacioni dijagrami	21	
	1.6	Lyapunovljevi brojevi	23	
2	Lyness-ova diferentna jednadžba			
	2.1	Osnovni pojmovi	26	
Li	Literatura			

Uvod

Teorija diskretnih dinamičkih sistema i diferentnih jednadžbi se intenzivno proučava u posljednjih tridesetpet godina, kako zbog značajnih matematičkih rezultata i teorija, tako i zbog velikih primjena u biologiji, fizici, ekonomiji, hemiji, društvenim naukama itd.

Kada se proučava dinamika diferentnih jednačina, prije svega, radi se o sljedećem: određivanje tačaka ekvilibrijuma i peroidičnih tačaka, analiza njihove stabilnosti i asimptotska stabilnost te određivanje haotičnog ponašanja.

Dynamica je paket razvijen na bazi poznatog računarskog programa Wolfram Mathematica, kao kolekcija gotovih alata i funkcija za proučavanje diskretnih dinamičkih sistema i diferentnih jednadžbi. Paket **Dynamica** su razvili profesori M. R. S. Kulenovic i Orlando Merino, sa Univerziteta Rhode Island (USA).

Dynamica sadrži niz alata i tehnika algebarske, numeričke i grafičke prirode: nalaženje tačaka ekvilibrijuma i periodičnih tačaka, klasifikacija stabilnosti ekvilibrijuma i periodičnih tačaka, analiza poluciklusa, izračunavanje i vizualizacija invarijanti, izračunavanje i vizualizacija Lyapunovljevih funkcija i Lyapunovljevih brojeva, generisanje bifurkacionih dijagrama, vizualizacija stabilne i nestabilne mnogostrukosti, te izračunavanje box dimenzije.

Osim toga, izvorni kod unutar **Dynamica** se može prilagoditi i proširiti od strane korisnika s programerskim iskustvom.

Konačno, **Dynamica** se može koristiti za kreiranje vrhunske tehničke dokumentacije za analizu diskretnih dinamičkih sistema, kao i vrhunske grafike koje se mogu onda iskoristiti u nekim drugim aplikacijama.

Dynamica paket, v. 3.0 (juli, 2009) za Wolfram Mathematica v. 6, 7 i 8, može se besplatno preuzeti sa adrese:

http://www.math.uri.edu/Dynamica

1 Dinamika jednodimenzionalnih diskretnih dinamičkih sistema

Definicija 1.1 Jednadžba oblika

$$x_{n+1} = f(x_n), \quad n = 0, 1, \dots$$
 (1)

gdje je $f: I \rightarrow I$ (I interval realnih brojeva), se naziva diferentnom jednadžbom prvog reda, a ujedno ćemo je zvati i jednodimenzionalni dinamički sistem.

Rješenje jednadžbe (1) je svaki niz $(x_n)_{n \in \mathbb{N}_0}$ koji zadovoljava jednadžbu (1) za sve $n = 0, 1, \ldots$

Definicija 1.2 Jednadžba oblika

$$x_{n+1} = a_n x_n + b_n, \quad n = 0, 1, \dots,$$
 (2)

gdje su $(a_n)_{n \in \mathbb{N}_0}$ i $(b_n)_{n \in \mathbb{N}_0}$ poznati nizovi realnih brojeva, naziva se **linear**nom diferentnom jednadžbom prvog reda.

U slučaju kada je $b_n = 0$ (n = 0, 1, ...), jednadžba (2) se naziva **homogenom**, dok se inače, to jest kada je $b_n \neq 0$ za bar jedno $n \in \{0, 1, ...\}$, jednadžba (2) naziva **nehomogenom**.

Obično se jednadžbi (2) dodaje takozvani uvjet početnih vrijednosti

$$x_0 = \alpha. \tag{3}$$

Diferentna jednadžba (2), zajedno s početnim uvjetom (3), čini tzv. problem početnih vrijednosti (skraćeno PPV).

Za neke klase diferentnih jednadžbi, prije svega za neke linearne, moguće je doći do općeg rješenja. Međutim, u općenitom slučaju to je vrlo teško postići. Zbog toga se, umjesto rješavanja jednadžbe, pažnja posvećuje ispitivanju ponašanja njenog rješenja u ovisnosti o početnom uvjetu x_0 .

Upoznajmo se sada s pojmovima ekvilibrijuma i periodičnosti rješenja diferentne jednadžbe (1).

Definicija 1.3

1. Skup svih (pozitivnih) iteracija $\{f^n(x_0): n \ge 0\}$, gdje je $f^0(x_0) = x_0$, se naziva (pozitivnom) **orbitom** od x_0 i označava se sa $O(x_0)$. Dakle,

 $O(x_0) := \{x_0, x_1, x_2, \dots\} = \{x_0, f(x_0), f(f(x_0)), \dots\}.$

2. **Tačka ekvilibrijuma** (fiksna tačka ili tačka ravnoteže) jednadžbe (1) je tačka $\bar{x} \in \mathbb{R}$, takva da je

$$f(\bar{x}) = \bar{x}.$$

3. Eventualna tačka ekvilibrijuma jednadžbe (1) je tačka $x^* \in \mathbb{R}$, za koju postoji $r \in \mathbb{N}$ tako da je

$$f^{r}(x^{*}) = \bar{x} \quad i \quad f^{r-1}(x^{*}) \neq \bar{x}.$$

4. Tačka $p \in \mathbb{R}$ naziva se **periodičnom tačkom perioda** k ako je

$$f^k(p) = p.$$

Ako je p periodična tačka, onda O(p) zovemo **periodičnom orbi**tom. U tom slučaju, uobičajeno je predstaviti orbitu kao konačan skup $\{x_0, x_1, \ldots, x_k\}$. Za orbite koje nisu periodične, kažemo da su **aperi**odične.

5. Tačka $p \in \mathbb{R}$ naziva se **periodičnom tačkom minimalnog perioda** k (ili prostog perioda k) ako je k najmanji broj za koji vrijedi

$$f^{k}(p) = p,$$

$$f^{l}(p) \neq p \quad za \ sve \quad l = 1, 2, \dots, k-1$$

6. Tačka $p^* \in \mathbb{R}$ naziva se **eventualnom periodičnom tačkom minimalnog perioda** k, ako postoji $r \in \mathbb{N}$ i periodična tačka p (minimalnog perioda k) tako da je

$$f^{r}(p^{*}) = p \quad i \quad f^{r-1}(p^{*}) \neq p.$$

Inače, simbol $f^n(x)$ predstavlja *n*-tu iteraciju preslikavanja f počev od tačke x.

Grafički, tačka ekvilibrijuma je apscisa tačke u kojoj grafik funkcije f siječe pravu y = x.

Sljedećim primjerom ilustrirat ćemo nalaženje tačke ekvilibrijuma i periodičnog rješenja diferentne jednadžbe.

Primjer 1.1 Logistička diferentna jednadžba

$$x_{n+1} = f(x_n) = 4x_n(1 - x_n) \tag{4}$$

ima dvije tačke ekvilibrijuma i četiri eventualne tačke ekvilibrijuma.

Rješenje. Tačke ekvilibrijuma nalazimo rješavajući jednadžbu

$$\bar{x} = f(\bar{x}) = 4\bar{x}(1-\bar{x})$$

odakle je

$$\bar{x}(3-4\bar{x})=0$$

pa dobijamo

$$\bar{x} = 0$$
 ili $\bar{x} = \frac{3}{4}$.

Dakle, tačke ekvilibrijuma su 0 i $\frac{3}{4}$.

Kako je

$$f(\frac{1}{4}) = \frac{3}{4},$$

$$f((f(\frac{1}{2} + \frac{1}{4}\sqrt{3})) = \frac{3}{4},$$

$$f(f(\frac{1}{2})) = 0,$$

$$f(f(f(\frac{1}{2} + \frac{1}{4}\sqrt{2}))) = 0,$$

to su eventualne tačke ekvilibrijuma: $\frac{1}{4}, \frac{1}{2} + \frac{1}{4}\sqrt{3}, \frac{1}{2}, \frac{1}{2} + \frac{1}{4}\sqrt{2}$. Jednadžba (4) također ima periodično rješenje perioda dva

$$\left\{\frac{5}{8} - \frac{1}{8}\sqrt{5}, \frac{5}{8} + \frac{1}{8}\sqrt{5}\right\}$$

i dvije eventualno periodične tačke perioda dva

$$\frac{1}{2} - \frac{1}{8}\sqrt{10 - 2\sqrt{5}}$$
 i $\frac{1}{2} + \frac{1}{8}\sqrt{10 - 2\sqrt{5}}$

jer je

$$f(f(\frac{1}{2} \pm \frac{1}{8}\sqrt{10 - 2\sqrt{5}})) = \frac{5}{8} + \frac{1}{8}\sqrt{5}.$$

1.1 Pojam stabilnosti

Definicija 1.4 (Stabilnost tačke ekvilibrijuma)

1. Tačka ekvilibrijuma \bar{x} jednadžbe (1) se naziva **stabilnom**, ili **lokalno stabilnom**, ako za svako $\varepsilon > 0$ postoji $\delta > 0$ tako da

 $|x_0 - \bar{x}| < \delta \Rightarrow |x_n - \bar{x}| < \varepsilon, \quad za \text{ sve } n \ge 0.$

- 2. Tačka ekvilibrijuma naziva se **nestabilnom** ako nije stabilna.
- 3. Tačka ekvilibrijuma \bar{x} jednadžbe (1) se naziva lokalnim atraktorom ako postoji $\gamma > 0$ takvo da

$$x_0 \in I$$
 i $|x_0 - \bar{x}| < \gamma \Rightarrow \lim_{n \to \infty} x_n = \bar{x}.$

- 4. Tačka ekvilibrijuma \bar{x} jednadžbe (1) se naziva **lokalno asimptotski stabilnom**, ili sinkom, ili atraktivnom fiksnom tačkom preslikavanja f ako je ona stabilna i ako je lokalni atraktor.
- 5. Tačka ekvilibrijuma \bar{x} jednadžbe (1) se naziva **globalnim atraktorom** ako

$$x_0 \in I \Rightarrow \lim_{n \to \infty} x_n = \bar{x}.$$

- 6. Tačka ekvilibrijuma \bar{x} jednadžbe (1) se naziva **globalno asimptotski stabilnom** ako je ona stabilna i ako je globalni atraktor.
- 7. Tačka ekvilibrijuma \bar{x} jednadžbe (1) se naziva **odbijajućom tačkom**, ili **repelerom**, ako postoji r > 0 takvo da, za svako $x_0 \in I$, za koje je $0 < |x_0 - \bar{x}| < r$, postoji $N \ge 1$ tako da je

$$|x_N - \bar{x}| \ge r.$$

Teorem 1.1 (Teorem linearizirane stabilnosti) Neka je I interval realnih brojeva i $f: I \to I$ neprekidno diferencijabilna funkcija. Osim toga, neka je \bar{x} tačka ekvilibrijuma jednadžbe (1). Tada vrijedi:

(i) ako je

 $|f'(\bar{x})| < 1,$

ekvilibrijum \bar{x} je lokalno asimptotski stabilan;

(ii) ako je

$$|f'(\bar{x})| > 1,$$

ekvilibrijum \bar{x} je odbijajuća fiksna tačka (repeler), tj. \bar{x} je nestabilan ekvilibrijum.

Za dokaz Teorema linearizirane stabilnosti vidjeti [N].

U slučaju kada je $|f'(\bar{x})| = 1$, Teorem linearizirane stabilnosti ne daje nikakve indicije u vezi sa stabilnošću ekvilibrijuma \bar{x} . Tada su potrebna dodatna ispitivanja.

Definicija 1.5 Neka je I interval realnih brojeva i $f: I \rightarrow I$ neprekidno diferencijabilna funkcija i neka je \bar{x} tačka ekvilibrijuma jednadžbe (1).

1. \bar{x} se naziva hiperboličnom fiksnom tačkom ako je

```
|f'(\bar{x})| \neq 1,
```

2. \bar{x} se naziva **nehiperboličnom fiksnom tačkom** ako je

$$|f'(\bar{x})| = 1.$$

Slučaj nehiperboličnog ekvilibrijuma, ne samo kod diferentnih jednadžbi prvog reda, nego i kod diferentnih jednadžbi bilo kojeg reda ili sistema diferentnih jednadžbi, specifičan je i mora se posebno razmatrati u svakom slučaju pojedinačno. Pokazuje se da je to ispitivanje vrlo komplicirano i da vrlo često, danas, ne možemo sa sigurnošću doći do potpunih rezultata.

Definicija 1.6 (Oscilacije)

- (a) Za niz $\{x_n\}_{n=0}^{\infty}$ kažemo da ima **eventualno** neko svojstvo P ako postoji cijeli broj $N \ge 0$ takav da svaki član niza $\{x_n\}_{n=N}^{\infty}$ ima to svojstvo.
- (b) Za niz $\{x_n\}_{n=0}^{\infty}$ kažemo da **oscilira oko nule** ili jednostavno **oscilira** ako članovi x_n nisu eventualno svi pozitivni niti eventualno svi negativni. Ako je drugačije, za niz kažemo da **ne oscilira**. Za niz $\{x_n\}_{n=0}^{\infty}$ kažemo da **strogo oscilira** ako za svaki $n_0 \ge 0$ postoje $n_1, n_2 \ge n_0$ takvi da vrijedi

$$x_{n_1}x_{n_2} < 0.$$

(c) Za niz $\{x_n\}_{n=0}^{\infty}$ kažemo da **oscilira oko** \bar{x} ako niz $\{x_n - \bar{x}\}_{n=0}^{\infty}$ oscilira. Za niz $\{x_n\}_{n=0}^{\infty}$ kažemo da **strogo oscilira oko** \bar{x} ako niz $\{x_n - \bar{x}\}_{n=0}^{\infty}$ strogo oscilira.

Definicija 1.7 (Stabilnost periodične tačke) Za periodičnu tačku p jednadžbe (1) minimalnog perioda k kažemo da je stabilna, asimptotski stabilna, nestabilna, ili globalni atraktor ako je p respektivno stabilna, asimptotski stabilna, nestabilna tačka ekvilibrijuma ili globalni atraktor od f^k .

Periodičnu orbitu možemo predstaviti kao konačan skup $\{x_0, x_1, \ldots, x_k\}$. U tom slučaju definišemo **množitelj (multiplikator) orbite** kojeg označavamo sa λ :

$$\lambda = f'(x_0)f'(x_1)\cdot\ldots\cdot f'(x_k).$$

Specijalno, ako je $\{p,f(p)\}$ periodično rješenje perioda dva jednadžbe (1), na osnovu teoreme (1.1) ono je stabilno ako je

$$|\lambda| = |f'(p)f'(f(p))| < 1$$

i nestabilno ako je

$$|\lambda| = |f'(p)f'(f(p))| > 1.$$

Definicija 1.8 (Bazen privlačenja) Neka je \bar{x} lokalno asimptotski stabilna fiksna tačka preslikavanja f. **Bazen privlačenja** od \bar{x} , u oznaci $\mathcal{B}(x)$, se definiše kao maksimalan skup J koji sadrži \bar{x} , i još vrijedi

$$\lim_{n \to \infty} f^n(x) = \bar{x} \quad \forall (x \in J).$$

Nalaženje bazena privlačenja fiksne ili periodične tačke je općenito težak zadatak. Ovdje ćemo predstaviti jedno od osnovnih topoloških svojstava bazena privlačenja. Prije toga, moramo definisati invarijantni skup.

Definicija 1.9 Skup M nazivamo **invarijantnim** pod preslikavanjem f ako je $f(M) \subset M$. Drugim riječima, M je invarijantan ako za svaki $x \in M$ elementi orbite O(x) pripadaju M.

Teorem 1.2 Neka je \bar{x} atraktivna fiksna tačka preslikavanja f. Tada je bazen privlačenja $\mathcal{B}(\bar{x})$ invarijantan otvoren interval.

1.2 Vizualizacija orbita i vremenskih nizova

Tip grafika koji se najčešće koristi za vizualizaciju rješenja jednodimenzionalne diferentne jednadžbe (1) naziva se **stepenasti dijagram**. Stepenasti dijagram je grafik u pravouglom koordinatnom sistemu, i sastoji se od sljedećeg:

- a) grafika funkcije y = f(x),
- b) grafika prave y = x,
- c) poligonalne linije koja se dobija spajanjem tačaka

 $(x_0, x_1), (x_1, x_1), (x_1, x_2), (x_2, x_2), (x_2, x_3), (x_3, x_3), \dots$

Linijski segmenti poligonalne linije stvaraju dojam stepenica. Također, važno je primijetiti da su tačke ekvilibrijuma zajedničke tačke grafika y = f(x) sa pravom y = x.

Primjer 1.2 Vizualizirati orbitu logističke diferentne jednadžbe (4) stepenastim dijagramom, sa početnim uvjetom $x_0 = 0.4$.

Rješenje. U ovom *prvom primjeru korištenja paketa Dynamica*, rješenje će biti nešto detaljnije.

Najprije ćemo učitati paket Dynamica u Wolfram Mathematica, naredbom:

<< Dynamica'

Nakon toga, definišemo logističku jednadžbu, pri čemu odgovarajuću funkciju f jednadžbe (1) dobijamo funkcijom DEToMap[].

```
Logisticeq = x[n + 1] == 4 x[n] (1 - x[n]);
LogisticMap = DEToMap[Logisticeq];
```

Provjerimo sada da je LogisticMap[x] zapravo naša funkcija f(x).

```
In[1]:= LogisticMap[x]
Out[1]= 4 (1 - x) x
```

Da bismo našli neku iteraciju (npr. 40-tu), sa nekim početnim uvjetom (npr. $x_0 = 0.4$) potrebno je iskoristiti funkciju Iterate[LogisticMap, 0.4, 40].

```
In[2]:= Iterate[LogisticMap, 0.4, 40]
Out[2]= 0.719059
```

Ukoliko želimo orbitu sa prvihnčlanova (uzet ćemo 40), koristimo funkciju Orbit[LogisticMap, 0.4, 40].

In[3] := Orbit[LogisticMap, 0.4, 40]
Out[3] = {0.4, 0.96, 0.1536, 0.520028, 0.998395, 0.00640774, 0.0254667,
0.0992726, 0.35767, 0.918969, 0.29786, 0.836557, 0.546917, 0.991195,
0.034909, 0.134761, 0.466403, 0.995485, 0.0179785, 0.0706211,
0.262535, 0.774441, 0.698727, 0.84203, 0.532063, 0.995888, 0.0163812,
0.0644512, 0.241189, 0.732068, 0.784578, 0.676061, 0.87601, 0.434465,
0.982821, 0.067536, 0.251899, 0.753784, 0.742374, 0.76502, 0.719059}

Konačno, funkcija StaircaseDiagram[] generiše stepenasti dijagram.

```
In[4]:= orb = Orbit[LogisticMap, 0.4, 40];
StaircaseDiagram[LogisticMap, orb, PlotRange -> All]
```

i dobijamo traženi grafik (slika 1). $\ \blacksquare$

Slika 1: Stepenasti dijagram orbite O(0.4) za $x_{n+1} = 4x_n(1-x_n)$.

Drugi tip grafika koji se koristi za vizualizaciju rješenja jednodimenzionalne diferentne jednadžbe (1) naziva se **vremenski niz**. Sastoji se od reprezentacije varijable x_n kao funkcije od n. Obično, horizontalna osa predstavlja n i vertikalna osa predstavlja x_n . Obično ga generišemo s obzirom na odgovarajuće tačke ravnoteže.

Prvo nalazimo tačke ekvilibrijuma logističke diferentne jednadžbe (4).

In[5]:= Solve[LogisticMap[x] == x, x]
Out[5]= {{x -> 0}, {x -> 3/4}}

Dobili smo dvije fiksne tačke, te ćemo ih imenovati kao ft[1] i ft[2]:

```
In[6]:= {ft[1], ft[2]} = {x} /. %
Out[6]= {{0}, {3/4}}
```

Na ovaj način smo dobili vrijednosti varijabli ft[1][[1]] = 0 i ft[2][[1]] = 3/4.

Za crtanje grafika vrmenskog niza koristi se Dynamica funkciju TimeSeriesPlot[]. Iskoristit ćemo prethodno generisanu orbitu orb sa početnim uvjetom $x_0 = 0.4$:

In[7]:= TimeSeriesPlot[orb, AxesOrigin -> {0, ft[2][[1]]}]

i dobijamo traženi grafik (slika 2).

Slika 2: Grafik vremenskog niza za orbitu O(0.4) za $x_{n+1} = 4x_n(1 - x_n)$.

Sličan grafik se dobija ako se izostave linije koje spajaju tačke na grafiku 2. Ovaj grafik se izvodi pomoću Dynamica funkcije OrbitPlot[]:

In[8]:= OrbitPlot[LogisticMap, 0.4, 40]

i dobijamo navedeni grafik (slika 3).

Slika 3: Grafik tačaka za orbitu ${\cal O}(0.4)$ za $x_{n+1}=4x_n(1-x_n)$

Primjer 1.3 Posmatrajmo dinamički sistem u zavisnosti od parametra A:

$$x_{n+1} = x_n^2 + A.$$
 (5)

Rješenje.

In[1]:= << Dynamica'</pre>

Nakon toga, definišemo datu jednadžbu, pri čemu odgovarajuću funkciju q jednadžbe (5) dobijamo funkcijom DEToMap[].

```
In[2]:= eqn = x[n+1]==x[n]^2 + A;
In[3]:= q = DEToMap[eqn];
```

Parametru ${\cal A}$ ćemo dodjeljivati posebne i konkretne vrijednosti za obavljanje numeričke simulcije.

In[4] := A = -0.5;

Sada ćemo generisati grafik vremenskog niza:

In[5]:= TimeSeriesPlot[q, 0.1, 20]

Slika 4: Grafik vremenskog niza za orbitu O(0.1) za $x_{n+1} = x_n^2 + A$

Tačke ekvilibrijuma diferentne jednadžbe (5) su:

In[6] := Solve[q[x] == x, x]
Out[6] := {{x -> -0.366025}, {x -> 1.36603}}

Grafik vremenskog niza (slika 4.) pokazuje da orbita konvergira ka tački ekvilibrijuma.

Generisat ćemo i grafik tačaka za istu orbitu kao i za vremenski niz.

ļ

Slika 5: Grafik tačaka za orbitu O(0.1) za $x_{n+1} = x_n^2 + A$

1.3 Osjetljivost ponašanja rješenja diferentne jednadžbe

Na primjeru preslikavanja $f(x) = x^2 + A$, ćemo uočiti da "relativno male" promjene parametra A mogu dati različito ponašanje rješenja.

Posmatrajući orbitu O(0.1) za A = -1.22 možemo vidjeti da postoji asimptotsko periodično rješenje perioda 2.

```
In[1]:= A = -1.22;
In[2]:= orb = Orbit [q, 0.1, 60];
In[3]:= Take [orb, {50, 60}]
Out[3]={-1.18667, 0.188187, -1.18459, 0.183243, -1.18642, 0.187597,
-1.18481, 0.183768, -1.18623, 0.18714, -1.18498}
```

Grafik vremenskog niza (slika 6.) pokazuje asimptotski karakter periodičnog rješenja perioda 2.

Slika 6: Grafik vremenskog niza: TimeSeriesPlot[orb]

12

Grafik tačaka (slika 7.) za istu orbitu, odnosno Dinamyca naredba <code>OrbitPlot[]</code> daje istu informaciju u jasnijem obliku.

Slika 7: Grafik tačaka: OrbitPlot[orb]

Drugi test, sa parametrom A = -1.3 ukazuje na postojanje asimptotske periodične tačke perioda 4. Prikazaćemo iteracije u rasponu od x_{50}, \ldots, x_{60} .

```
In[4]:= A = -1.3;
In[5]:= orb1 = Orbit[q, 0.1, 60];
In[6]:= Take[orb1, {50, 60}]
Out[6]= {-1.29962, 0.389019, -1.14866, 0.0194303, -1.29962, 0.389019,
-1.14866, 0.0194303, -1.29962, 0.389019, -1.14866}
```

Asimptotsko ponašanje može biti teško za vizaulizaciju pomoću grafika vrmenskog niza (slika (8)).

Slika 8: Grafik vremenskog niza: TimeSeriesPlot[orb1]

Na grafiku tačaka bolje uočavamo asimptotska ponašanja.

Pomoću naredbe FindMinimalPeriod[] možemo odrediti minimalni period periodičnih orbita.

```
In[7]:= FindMinimalPeriod[Orbit[q, 0, 200]]
Minimal period = 4
Periodic orbit = {-1.29962,0.389019,-1.14866,0.0194303}
```


Slika 9: Grafik tačaka: OrbitPlot[orb1]

Finalni test ćemo uraditi sa parametrom A = -1.38. Prikazaćemo iteracije u rasponu od x_{50}, \ldots, x_{60} .

```
In[8]:= A = -1.38;
In[9]:= orb2 = Orbit[q, 0.1, 60];
In[10]:= Take[orb2, {50, 60}]
Out[6]= {-1.3667, 0.487872, -1.14198, -0.0758786, -1.37424, 0.508542,
-1.12138, -0.122496, -1.36499, 0.48321, -1.14651}
```

Crtanje grafika tačaka (60 tačaka) sugeriše na moguće postojanje periodčne tačke perioda 4, koja je lokalno asimptotski stabilna.

Slika 10: Grafik tačaka: OrbitPlot[orb2]

Međutim, crtanje istog grafika sa 600 tačaka daje drugačiju predstavu. Rješenje konvergira periodičnoj tački perioda 8.

Na kraju, možemo korisiti i histogram za uočavanje periodičnosti rješenja. Histogram prvih 3000 članova orbite O(0.1) ukazuje da rješenje konvergira periodičnom rješenju perioda 8.

Slika 11: Grafik tačaka: OrbitPlot[q, 0.1, 600]

Slika 12: Histogram: Histogram[Orbit[q, 0.1, 3000], 100]

1.4 Brzina atrakcije orbita

Sada ćemo pokazati kako množitelj periodične orbite određuje brzinu atrakcije orbite. Udaljenost od fiksne tačke treba ići ka0eksponencijalno brzo.

Posmatrat ćemo orbitu za A = -0.4.

```
In[11]:= A = -0.4;
In[12]:= orb3 = Orbit[q, 0, 40];
In[13]:= TimeSeriesPlot[orb3, PlotRange -> All]
```

Generišimo i grafik tačaka orbite.

Sada ćemo vidjeti kako je brzo iterativno približavanje tački ekvilibrijuma pomoću računalne metode.

15

Odredimo fiksne tačke.

```
In[14]:= Solve[q[x] == x, x]
Out[14]= {{x -> -0.306226}, {x -> 1.30623}}
```


Slika 13: Grafik vremenskog niza pokazuje brzu konvergenciju niza tačaka

Slika 14: Grafik tačaka orbite

Mogli smo dobiti razumnu aproksimaciju tačke ekvilibrijuma i velikim brojem iteracija. Uzmimo npr. 1000 iteraciju.

```
In[15]:= fixpoint = Iterate[q, 0, 1000]
Out[15]= -0.306226
```

Sada oduzimamo ovu vrijednost (fixpoint) od svakog člana orbite (orb3), i dobijamo listu razlika koju možemo iskoristiti kao ideju za brzinu konvergencije.

In[16]:= diff = orb3 - fixpoint;

Logaritamski grafik ove razlike (lista diff) možemo iskoristiti za prikaz približavanja nuli kao eksponencijalna funkcija od n.

```
In[17]:= ListLogPlot[Abs[diff]]
```

Lista omjera pokazuje da je svaka razlika odnosno svaki član liste diff, aproksimativno 0.612 puta prethodni član.

Slika 15: Logaritamski grafik

```
In[18]:= ratios = Table[diff[[i + 1]]/diff[[i]], {i, 1, 30}]
out[18] = {-0.306226, -0.706226, -0.546226, -0.648626, -0.588988, -0.626271,
-0.603797, -0.617677, -0.609224, -0.614418, -0.611243, -0.61319,
-0.611999, -0.612729, -0.612282, -0.612556, -0.612388, -0.612491,
-0.612428, -0.612466, -0.612443, -0.612457, -0.612448, -0.612454,
-0.61245, -0.612452, -0.612451, -0.612452, -0.612451, -0.612452}
```

Naredni grafik (slika 16.) pokazuje brzu konvergenciju liste **ratio** ka njenoj granici.

In[19]:= ListPlot[ratios, Frame -> True]

Slika 16: Grafik liste ratio

Funkcija Multiplier[] može se iskoristiti za izračunavanje konstantnog omjera. Ustvari, to je množitelj periodične orbite, s tim da za periodičnu tačku uzmemo fiksnu tačku.

```
In[20]:= Multiplier[q, {fixpoint}]
Out[20]= -0.612452
```

1.5 Bifurkacije. Bifurkacioni dijagrami

1.5.1 Bifurkacije

Najpoznatija nelinearna diskretna jednadžba koja se koristi za modeliranje jedne vrste je logistička diferentna jednadžba:

$$x_{n+1} = f_p(x_n) = px_n(1 - x_n), \quad n = 0, 1, \dots, \quad p > 0, \quad 0 \le x \le 1.$$
(6)

Da bismo našli tačke ekvilibrijuma dovoljno je riješiti jednadžbu:

$$f_p(x) = px(1-x) = x.$$

```
In[21]:= Logisticeq = x[n + 1] == p x[n] (1 - x[n]);
In[22]:= LogisticMap = DEToMap[Logisticeq];
In[23]:= Solve[LogisticMap[x] == x, x]
Out[23]= {{x -> 0}, {x -> (-1 + p)/p}}
```

Stoga su tačke ekvilibrijuma 0 i $\frac{p-1}{p}$. Ispitajmo stabilnost svake od navedenih tačaka. Izračunajemo prvi izvod preslikavanja f_p .

$$f'_p(x) = (px(1-x))' = (px - px^2)' = p - 2px.$$

- (a) Tačka ekvilibrijuma je 0. Kako je $f_p^\prime(0)=p,$ na osnovu teorema 1.1 imamo:
 - (i) 0 je lokalno asimptotski stabilna fiksna tačka za 0
 - (ii) 0 je nestabilna fiksna tačka zap>1.
- (b) Tačka ekvili
brijuma je $\frac{p-1}{p}.$ Zbog

$$f'_p\left(\frac{p-1}{p}\right) = p - 2p \cdot \frac{p-1}{p} = p - 2p + 2 = 2 - p,$$

na osnovu teorema 1.1 imamo:

- (i) $\frac{p-1}{p}$ je lokalno asimptotski stabilna fik
sna tačka za 1
- (ii) $\frac{p-1}{p}$ je nestabilna fiksna tačka za p > 3.

Da bismo odredili periodično rješenje perioda dva, dovoljno je riješiti jednadžbu:

$$f_p(f_p(x)) = p(px(1-x))(1-px(1-x)) = p^2x(1-x)(1-px(1-x)) = x.$$

In[24]:= Solve[LogisticMap[LogisticMap[x]] == x, x]
Out[24]:= {{x -> 0}, {x -> (-1 + p)/p},
{x -> (p + p^2 - p Sqrt[-3 - 2 p + p^2])/(2 p^2)},
{x -> (p + p^2 + p Sqrt[-3 - 2 p + p^2])/(2 p^2)}
In[25]:=FullSimplify[%]
Out[25]={{x -> 0}, {x -> (-1 + p)/p},
{x -> (1 + p - Sqrt[(-3 + p) (1 + p)])/(2 p)},
{x -> (1 + p + Sqrt[(-3 + p) (1 + p)])/(2 p)}

Dobili smo četiri rješenja, od kojih su nam dva rješenja već bila poznata, naime, tačke ekvilibrijuma su ujedno i periodične tačke bilo kojeg perioda. Preostala dva rješenja su:

$$p_1 = \frac{1+p-\sqrt{(p-3)(p+1)}}{2p}$$
 i $p_2 = \frac{1+p+\sqrt{(p-3)(p+1)}}{2p}$.

Tako postoje dvije periodične tačke minimalnog perioda dva kada je p > 3.

Odredimo i uslov pod kojim su ova dva periodična rješenja lokalno asimptotski stabilna.

Prema teoremu 1.1, uslov je

$$\left| \left(f_p^2(p_1) \right)' \right| < 1 \quad i \quad \left| \left(f_p^2(p_2) \right)' \right| < 1.$$

Uvrstimo p_1 i p_2 u izvod funkcije $f_p^2(x)$:

$$(f_p^2(x))' = -p^2(-1+2x)(1+2p(-1+x)x)$$

i dobijamo:

$$(f_p^2(p_1))' = 4 + 2p - p^2$$
 i $(f_p^2(p_2))' = 4 + 2p - p^2$.

Rješavajući nejednadžbu $|4+2p-p^2|<1$ dobijamo skup

$$(1 - \sqrt{6}, -1) \cup (3, 1 + \sqrt{6}).$$

S obzirom da je p > 0 uzimamo samo interval $(3, 1 + \sqrt{6})$. Konačno, za svaki parametar p iz tog intervala periodična rješenja p_1 i p_2 perioda dva su *lokalno aspimptotski stabilna*.

Generalno, bifurkacija (razdvajanje) predstavlja događaj u kojem dolazi do nekog razdvajanja, odnosno bifurkacija (udvostručavanje perioda) predstavlja trenutak u kojem iz jedne atraktivne fiksne tačke logističke jednadžbe nastaju dvije vrijednosti.

Nije teško primijetiti kako se razmatranje karakteristika logističke jednadžbe svodi na proučavanje nekih specifičnih tačaka same funkcije i njezina parametra p.

Dakle, kada parametar p promijeni svoju vrijednost, ponašanje rješenja se također mijenja. Označimo sa b_k vrijednost paramatra p u kojoj se javlja promjena ponašanja u k-toj posmatranoj tački. Tada imamo sljedeću tablicu.

Interval parametra p	Vrsta ponašanja rješenja	Kritična vrijednost
		paramtera \boldsymbol{p}
0	Tačka ekvilibrijuma 0 je lokalno asimp-	$b_0 = 1$
	totski stabilna	
1	Tačka ekvilibrijuma $\frac{p-1}{p}$ je lokalno	$b_1 = 3$
	asimptotski stabilna	
3	Periodična rješenja p_1 i p_2 su lokalno	$b_2 = 1 + \sqrt{6}$
	aspimptotski stabilna	

Vrijednosti b_k se nazivaju **bifurkacione vrijednosti** parametra.

Nastavljajući ovaj proces, možemo naći sljedeću bifurkacionu vrijednost b_3 koja ne odgovara periodičnom rješenju prostog perioda tri, ali odgovara periodičnom rješenju prostog perioda četiri.

Sljedeća bifurkaciona vrijednost b_4 odgovara periodičnom rješenju perioda osam. Osim toga, može se dokazati da je za $p \in (b_2, b_3)$, periodično rješenje prostog perioda četiri stabilno, a periodično rješenje perioda dva postaje nestabilno.

Isto tako, može se dokazati da je za $p \in (b_3, b_4)$, periodično rješenje prostog perioda osam stabilno, a periodično rješenje perioda četiri postaje nestabilno.

Nastavljajući ovaj proces, možemo vidjeti da postoji niz $\{b_k\}_{n=0}^{\infty}$ bifurkacionih vrijednosti parametra sa sljedećim svojstvom: za $p \in (b_k, b_{k+1})$ periodično rješenje prostog perioda 2^k je stabilno, a periodična rješenja svakog od perioda $2, \ldots, 2^{k-1}$ postaju nestabilna.

Ovaj fenomen se naziva put u haos udvostručavanjem perioda bifurkacije.

Ovo znači, ako se parametar p poveća iznad b_1 , tačka ekvilibrijuma se grana na periodično rješenje perioda dva; a iznad vrijednosti b_2 periodično rješenje perioda dva se grana na periodično rješenje perioda četiri, itd.

Niz bifurkacionih vrijednosti parametra teži broju $b_{\infty} = 3.56994...$ gdje jednadžba (6) ima periodična rješenja svih perioda kao i neka neperiodična rješenja. Ovakva situacija se često opisuje kao **haotično ponašanje** ili **haos**.

Niz $\{b_k\}_{n=0}^\infty$ bifurkacionih vrijednosti parametra ima izuzetno svojstvo:

$$\lim_{k \to \infty} \frac{b_k - b_{k-1}}{b_{k+1} - b_k} = \delta \approx 4.66920....$$

Broj $\delta = 4.66920...$ se zove **Feigenbaum-ov broj**, a naziv je dobio po njegovom otkrivaču, fizičaru Mitchell Feigenbaum.

Ustvari, Feigenbaum je napravio mnogo veće otkriće. Broj δ je univerzalan i nezavisi od oblika familije preslikavanja f_p . Međutim, broj b_{∞} zavisi od familije preslikavanja koja se razmatraju.

1.5.2 Bifurkacioni dijagrami

Već smo vidjeli, barem što se tiče logističke diferentne jednadžbe, da različite vrijednosti parametra mogu dati kvalitativno različita rješenja. Posebno nas zanima promjena prirode rješenja kada se parametar mijenja, a za ispitivanje takvih promjena koristiti ćemo *bifurkacioni dijagram*.

Bifurkacioni dijagram pokazuje mnoge iznenadne kvalitativne promjene u atraktivnoj fiksnoj tački kao i u periodičnoj orbiti.

Jedna od prvih otkrivenih bifurkacija je bifurkacija udvostručavanja perioda koja se pojavljuje u slučaju jednodimenzionalne logističke jednadžbe (6).

Dinamyca funkcija za generisanje bifurkacionog dijagrama je BifurcationPlotND.

```
BifurcationPlotND[funkcija,{p, pmin, pmax},{seed},
Steps -> broj1, Iterates -> broj2, FirstIt -> broj3];
```

Bifurkacioni dijagram generišemo ponavljajući sljedeći postupak, gdje su *FirstIt, Iterates, Steps, pmax, pmin* unaprijed dati brojevi.

- (a) Izaberemo vrijednost parametra
 p, počevši sa incijalnom vrijednost
ipmin.
- (b) Izaberemo početnu tačku $seed = x_0$ u promatranom skupu.
- (c) Izračunamo orbitu u x_0 .
- (d) Odbacimo prvih FirstIt 1iteracija i crtamo orbitu počevši sa iteracijom FirstIt i završavajući nakon Iterates iteracija.
- (e) Povećamo pza vrijednost (pmax-pmin)/Stepsi ponovimo postupak.

Najprije ćemo definisati logističku diferentnu jednadžbu sa parametrom, a zatim generisati bifurkacioni dijagram kroz paket Dynamica.

```
Univerzitet u Tuzli
```

```
In[1]:=logisp = x[n + 1] == p x[n] (1 - x[n]);
In[2]:=logispmap = DEToMap[logisp];
In[3]:=BifurcationPlotND[logispmap, {p, 2.5, 4.0}, {0.5},
FirstIt -> 450, Iterates -> 200, Steps -> 350]
```


Slika 17: Bifurkacioni dijagram za2.5

Konačno dobijamo bifurkacioni dijagram logističke diferentne jednadžbe za parametar 2.5 . Na ovom dijagramu, horizontalna osa predstavlja parametar <math>p a vertiklna osa rješenje x_n .

Broj presjeka sa vertikalnom linijom u bilo kojoj tački daje period atraktivnog rješenja za odgovarajuću vrijednost parametra p.

Može se vidjeti rješenje perioda dva, perioda četiri i perioda osam.

Ovo je početak puta u haos udvostručavanjem perioda.

Na dijagramu se također vide "bijeli prozori" za vrijednost parametra nešto veću od 3.8, što sugeriše na postojanje periodičnog rješenja perioda 3 blizu 3.8.

Bifurkacione vrijednosti za periodična rješenja perioda 2, 4 i 8 mogu se preciznije odrediti na dijagramu za 3.4

Neki bijeli vertikalni prozori smješteni između p=3.58i 3.59 su jasnije vidljivi.

```
In[4]:=BifurcationPlotND[logispmap, {p, 3.4, 3.6}, {0.5},
FirstIt -> 450, Iterates -> 200, Steps -> 350]
```


Slika 18: Bifurkacioni dijagram za3.4

1.6 Lyapunovljevi brojevi

Drugi način za mjerenje složenosti ponašanja rješenja defirentne jednadžbe se računa sa Lyapunovljevim brojem. U slučaju jednodimenzionalnog dinamičkog sistema

$$x_{n+1} = f(x_n), \quad n = 0, 1, \dots, \quad f: (a, b) \to (a, b)$$
 (7)

"Lyapunovljev eksponent" je mjera odstupanja dviju orbita koje počinju sa neznatno različitim početnim uvjetima x_0 i $x_0 \pm \delta_0$, $\delta_0 > 0$.

Ako je x_0 periodična tačka perioda k dinamičkog sistema (7), i ako započnemo orbitu sa bliskom tačkom $x_0 \pm \delta_0$, onda nakon prve iteracije, gdje je $x_1 = f(x_0)$ i $x'_1 = f(x_0 \pm \delta_0)$ razlika među njima je približno

$$x_1 - x'_1 = f(x_0) - f(x_0 \pm \delta_0) \approx f'(x_0)\delta_0.$$

Označimo sa

$$\delta_i = |x_i - x'_i|, \quad M_i = |f'(x_i)|.$$

 \mathbf{Iz}

$$\delta_1 = |x_1 - x_1'| \approx |f'(x_0)\delta_0| = |f'(x_0)|\delta_0 = M_0\delta_0$$

vidimo da je M_0 faktor uvećavanja za prvu iteraciju.

Nakon druge iteracije, dobijamo

$$\delta_2 \approx |f'(x_1)| \delta_1 = M_1 \delta_1 \approx M_0 M_1 \delta_0,$$

gdje je M_1 faktor uvećavanja za drugu iteraciju.

Nastavljajući dalje na ovakav način, možemo zaključiti da je ukupni faktor uvećanja za periodičnu orbitu perioda k (tokom jednog ciklusa) jednak proizvodu:

$$M_0M_1\ldots M_{k-1}.$$

23

Univerzitet u Tuzli

Prirodno-matematički fakultet

Budući da je ovaj proizvod akumulacija faktora uvećanja, ima smisla uzeti u obzir neku prosječnu vrijednost. Najpovoljniji je geometrijska sredina:

$$\left(M_0 M_1 \dots M_{k-1}\right)^{1/k}$$

Ako uzmemo logaritam prethodne geometrijske sredine, i onda to označimo sa λ dobijamo:

$$\lambda = \ln (M_0 M_1 \dots M_{k-1})^{1/k}$$

$$\lambda = \frac{1}{k} (\ln M_0 + \ln M_1 \dots \ln M_{k-1})$$

$$\lambda = \frac{1}{k} (\ln |f'(x_0)| + \ln |f'(x_1)| \dots \ln |f'(x_{k-1})|)$$

Intuitivno, uvjet za stabilnost periodične orbite je da prosječni faktor uvećanja bude manji od 1, što je ekvivalentno sa

$$\lambda < 1$$
 stabilna
 $\lambda > 1$ nestabilna.

Sada ćemo ovaj pristup (sa periodičnom orbitom) iskoristiti kako bi ga proširili na proizvoljnu orbitu.

Definicija 1.10 (Lyapunovljev eksponent) Neka je f neprekidno diferencijabilno preslikavanje na \mathbb{R} i neka je x_0 data početna tačka. **Lyapunovljev eksponent** $\lambda(x_0)$ preslikavanja f se definiše kao

$$\lambda(x_0) = \lim_{k \to \infty} \frac{1}{k} (\ln |f'(x_0)| + \ln |f'(x_1)| \dots \ln |f'(x_{k-1})|), \tag{8}$$

ukoliko limes postoji. U slučaju kada je bilo koji od izvoda jednak nuli, tada uzimamo da je $\lambda(x_0) = -\infty$. **Lyapunovljev broj** $L(x_0)$ se definiše kao eksponent Lyapunovljevog eksponenta, ukoliko postoji:

$$L(x_0) = e^{\lambda(x_0)}.$$

24

Definicija 1.11 (Asimptotski periodična orbita) Za orbitu $\{x_1, x_2, x_3, ...\}$ kažemo da je **asimptotski periodična** ako postoji periodična orbita $\{y_1, y_2, y_3, ...\}$ takva da vrijedi

$$\lim_{n \to \infty} |x_n - y_n| = 0. \tag{9}$$

Sada možemo definisati i haotičnu orbitu.

Definicija 1.12 (Haotična orbita) Neka je f preslikavanje na \mathbb{R} i neka je $\{x_0, x_1, x_2, \ldots\}$ ograničena orbita od f. Za orbitu kažemo da je haotična, ako

- 1. nije asimptotski periodična
- 2. Lyapunovljev eksponent $\lambda(x_0) > 0$.

Sada ćemo generisati grafik Lyapunovljevih brojeva, kao grafik tačaka. Prije toga, moramo odrediti Lyapunovljeve brojeve. U tu svrhu ćemo korisititi Dynamica funkciju LyapunovNumbers, čija je sintaksa

```
LyapunovNumbers[f,vars0,niter]
```

koja nalazi približne Lyapunovljeve brojeve od niter iteracija preslikavanja f
 sa početnom tačkom vars0. Uzet ćemo logističko preslikavanje sa parametrom
 p=3.9za generisanje grafika Lyapunovljevih brojeva, sa 500 iteracija (tačaka).

```
In[1]:= << Dynamica'
In[2]:= Logisticeq = x[n + 1] == p x[n] (1 - x[n]);
In[3]:= LogisticMap = DEToMap[Logisticeq];
In[4]:= p = 3.9;
In[5]:= 11 = LyapunovNumbers[LogisticMap, {0.2}, 500];
In[6]:= ListPlot[11, Joined -> True]
```

što daje sljedeći grafik.

Slika 19: Grafik Lyapunovljevih brojeva sa 500 iteracija

Uzimajući više iteracija (tačaka), dobijamo više precizan grafik logističke jednadžbe. Na grafiku (19) vidimo da je orbita sa početkom u $x_0 = 0.2$ haotična, jer je njen Lyapunovljev broj očito veći od 1.

2 Lyness-ova diferentna jednadžba

2.1 Osnovni pojmovi

Neka je ${\cal I}$ interval realnih brojeva, i neka je

$$f\colon I\times I\to I$$

neprekidno diferencijabilna funkcija. Tada svaki skup početnih uvjeta $x_0, x_{-1} \in I$ diferentne jednadžbe

$$x_{n+1} = f(x_n, x_{n-1}), \quad n = 0, 1, \dots$$
 (10)

ima jedinstveno rješenje $\{x_n\}_{n=-1}^{\infty}$.

Tačka ekvilibrijuma jednadžbe (10) je tačka $\bar{x} \in I$, takva da je

$$f(\bar{x}, \bar{x}) = \bar{x}$$

odnosno

$$x_n = x$$
 za svako $n \ge 0$

je rješenje jednadžbe (10), ili ekvivalentno, \bar{x} je fiksna tačka preslikavanja f.

Lyness-ova diferentna jednadžba je racionalna diferentna jednadžba drugog reda oblika

$$x_{n+1} = f(x_n, x_{n-1}) = \frac{A + x_n}{x_{n-1}}$$
(11)

gdje je paremetar Anenegativan realan broj i početni uvjeti x_{-1} i x_0 proizvoljni pozitivni realni brojevi takvi da je

$$x_n > 0$$
, za svako $n > 0$.

Definicija 2.1 (Stabilnost tačke ekvilibrijuma)

1. Tačka ekvilibrijuma \bar{x} jednadžbe (10) se naziva **stabilnom**, ili **lokalno stabilnom**, ako za svako $\varepsilon > 0$ postoji $\delta > 0$ tako da

$$x_0, x_{-1} \in I \quad i \quad |x_0 - \bar{x}| + |x_{-1} - \bar{x}| < \delta \Rightarrow |x_n - \bar{x}| < \varepsilon, \quad za \ svako \ n \ge -1.$$

- 2. Tačka ekvilibrijuma naziva se **nestabilnom** ako nije stabilna.
- 3. Tačka ekvilibrijuma \bar{x} jednadžbe (10) se naziva lokalnim atraktorom ako postoji $\gamma > 0$ takvo da

$$x_0, x_{-1} \in I$$
 $i |x_0 - \bar{x}| + |x_{-1} - \bar{x}| < \gamma \Rightarrow \lim_{n \to \infty} x_n = \bar{x}.$

- 4. Tačka ekvilibrijuma \bar{x} jednadžbe (10) se naziva **lokalno asimptotski stabilnom**, ili sinkom, ili atraktivnom fiksnom tačkom preslikavanja f ako je ona stabilna i ako je lokalni atraktor.
- 5. Tačka ekvilibrijuma \bar{x} jednadžbe (10) se naziva globalnim atraktorom ako

$$x_0, x_{-1} \in I \Rightarrow \lim_{n \to \infty} x_n = \bar{x}.$$

- 6. Tačka ekvilibrijuma \bar{x} jednadžbe (10) se naziva **globalno asimptotski** stabilnom ako je ona stabilna i ako je globalni atraktor.
- 7. Tačka ekvilibrijuma \bar{x} jednadžbe (10) se naziva **odbijajućom tačkom**, ili **repelerom**, ako postoji r > 0 takvo da, za svako $x_0, x_{-1} \in I$, za koje je $0 < |x_0 - \bar{x}| + |x_{-1} - \bar{x}| < r$, postoji $N \ge 1$ tako da je

$$|x_N - \bar{x}| \ge r.$$

Jasno, repeler je nestabilna tačka ekvilibrijuma.

Neka

$$p = \frac{\partial f}{\partial u}(\bar{x}, \bar{x})$$
 i $q = \frac{\partial f}{\partial v}(\bar{x}, \bar{x})$

označavaju parcijalne izvode od f(u,v)izračunate u ekvilibrijumu \bar{x} jednadžbe (10).

Tada se jednadžba

$$y_{n+1} = py_n + qy_{n-1}, \quad n = 0, 1, \dots$$
(12)

zove linearizirana jednadžba pridružena jednadžbi (10) u tački ekvilibrijuma \bar{x} .

Pretpostavimo da rješenja jednadžbe (12) imaju oblik

$$y_n = \lambda^n, \quad n = 0, 1, \dots$$

gdje vrijednost $\lambda \neq 0$ treba odrediti. Zamjenom ove vrijednosti u jednadžbu (12) dobijamo:

$$\lambda^{n+1} = p\lambda^n + q^{\lambda-1}$$

odakle dijeljenjem sa $\lambda^{n-1} \neq 0$, slijedi

$$\lambda^2 = p\lambda + q \tag{13}$$

Ova jednadžba se naziva karakterističnom jednadžbom diferentne jednadžbe (10), a njeni korijeni λ se nazivaju svojstvenim vrijednostima.

Teorem 2.1 (Teorem linearizirane stabilnosti)

- (a) Ako oba korijena karakteristične jednadžbe (13) leže u otvorenom jediničnom disku $|\lambda| < 1$ onda je ekvilibrijum \bar{x} jednadžbe (10) lokalno asimptotski stabilan.
- (b) Ako je barem jedan od korijena karakteristične jednadžbe (13) po apsolutnoj vrijednosti veći od jedan, onda je ekvilibrijum \bar{x} jednadžbe (10) nestabilan.
- (c) Potreban i dovoljan uslov da oba korijena karakteristične jednadžbe (13) leže u otvorenom jediničnom disku $|\lambda| < 1$, je

$$|p| < 1 - q < 2. \tag{14}$$

U ovom slučaju, \bar{x} je **sink**.

(d) Potreban i dovoljan uslov da oba korijena karakteristične jednadžbe (13) imaju apsolutnu vrijednost veću od jedan, je

$$|q| > 1$$
 i $|p| < |1 - q|$.

U ovom slučaju, \bar{x} je **repeler**.

 (e) Potreban i dovoljan uslov da jedan korijen karakteristične jednadžbe (13) ima apsolutnu vrijednost veću od jedan, i da drugi ima apsolutnu vrijednost manju od jedan, je

$$p^2 + 4q > 0$$
 i $|p| > |1 - q|$.

U ovom slučaju, nestabilni ekvilibrijum se zove sedlasta tačka.

(f) Potreban i dovoljan uslov da korijen karakteristične jednadžbe (13) ima apsolutnu vrijednost jednaku jedan, je

$$|p| = |1 - q|$$

ili

$$q = -1 \quad i \quad |p| \le 2.$$

U ovom slučaju, ekvilibrijum \bar{x} se zove **nehiperbolična tačka**.

Definicija 2.2

(a) Za rješenje $\{x_n\}_{n=-1}^{\infty}$ jednadžbe (10) kažemo da je **periodično** sa periodom p ako je

$$x_{n+p} = x_n \quad za \ svako \quad n \ge -1. \tag{15}$$

(b) Za rješenje $\{x_n\}_{n=-1}^{\infty}$ jednadžbe (10) kažemo da je **periodično sa prostim periodom** p, ili p-ciklično ako je ono periodično sa periodom p i ako je p najmanji prirodan broj za koji vrijedi (15).

Važan alat za ispitivanje stabilnosti i asimptotskih ponašanja nekih diferentnih jednadžbi je proučavanje njihovih invarijanti.

Definicija 2.3 Nekonstantno neprekidno preslikavanje $I: \mathbb{R}^2 \to \mathbb{R}$ se naziva *invarijanta* za (10) ako vrijedi

$$I(x_{n+1}, x_n) = I(x_n, x_{n-1})$$
 za svako $n = 0, 1, ...$

Specijalan slučaj jednadžbe (11), z
aA=1,Lyness je otkrio 1942. godine radeći na problemima iz Teorije brojeva. U ovom speci
ajlnom slučaju, jednadžba postaje

$$x_{n+1} = \frac{1+x_n}{x_{n-1}}, \quad n = 0, 1...$$
 (16)

a svako njeno rješenje je periodično sa periodom pet. Zaista je rješenje jednadžbe (16) sa početnim uvjetima x_0 i x_{-1} 5-ciklično:

$$x_{-1}, x_0, \frac{1+x_0}{x_{-1}}, \frac{1+x_{-1}+x_0}{x_{-1}x_0}, \frac{1+x_{-1}}{x_0}, \dots$$

Jednadžba (11) posjeduje invarijantu

$$I(x_n, x_{n-1}) = \left(1 + \frac{1}{x_n}\right) \left(1 + \frac{1}{x_{n-1}}\right) (A + x_n + x_{n-1}) = constant$$

iz čega slijedi da je svako rješenje jednadžbe (11) ograničeno odozdo i odozgo sa pozitivnom konstantom.

U posljednjih nekoliko godina Lynessova jednadžba (11) je privukla veliku pažnju stručnjaka iz oblasti diskretnih dinamičkih sistema i diferentnih jednadžbi. Jedan od razloga za taj interes je bogata dinamika koju posjeduje ova jednadžba

Sada ćemo razmotriti problem pronalaženja i analize tačaka ekvilibrijuma Lynessove jednadžbe. Lynessovo preslikavanje ćemo definirati u zavisnosti od parametara A, na sljedeći način:

 $In[1] := L[x_, y_] := (A + x)/y;$

Odredimo fiksne tačke.

In[2] := Solve[L[x, x] == x, x] $Out[2] = \{ \{x \rightarrow 1/2 \ (1 - Sqrt[1 + 4 A]) \}, \{x \rightarrow 1/2 \ (1 + Sqrt[1 + 4 A]) \} \}$ In[3]:= {ft1, ft2} = {x, x} /. % Out[3] = {{1/2 (1 - Sqrt[1 + 4 A]), 1/2 (1 - Sqrt[1 + 4 A])}, $\{1/2 (1 + Sqrt[1 + 4 A]), 1/2 (1 + Sqrt[1 + 4 A])\}\}$ Vidimo da imaju dvije fiksne tačke. U varijable ft1 i ft2 smo pohranili prvu i drugu fiksnu tačku. Odredimo parcijalne izvode po objema promjenljivim. In[4] := p = D[L[x, y], x]Out[4] = 1/yIn[5] := q = D[L[x, y], y] $Out[5] = -((A + x)/y^2)$ Odredimo vrijednost p i q u fiksnoj tački ft1, $In[7] := \{x, y\} = ft1;$ In[8] := p1 = pOut[8] = 2/(1 - Sqrt[1 + 4 A])In[9] := q1 = qOut[9] = -((4 (A + 1/2 (1 - Sqrt[1 + 4 A])))/(1 - Sqrt[1 + 4 A])^2) a zatim i u fiksnoj tački ft2. $In[7] := \{x, y\} = ft2;$ In[8] := p2 = pOut[8] = 2/(1 + Sqrt[1 + 4 A])In[9] := q2 = q $Out[9] = -((4 (A + 1/2 (1 + Sqrt[1 + 4 A])))/(1 + Sqrt[1 + 4 A])^{2})$ Odredimo karakterističnu jednadžbu. $In[10] := kp = \langle [Lambda]^2 - p \langle [Lambda] - q == 0;$ In[11]:= kp = FullSimplify[kp]

Out[11] = (\[Lambda] + Sqrt[1 + 4 A] \[Lambda] + 2 A (1 + \[Lambda]^2))/(2 A)

Izračunajmo karakterističnu jednadžbu u ft1,

```
In[12]:= {x, y} = ft1;
In[13]:= kp1 = kp;
In[14]:= kp1 = FullSimplify[kp1, A > 0]
Out[14] = (\[Lambda] + Sqrt[1 + 4 A] \[Lambda] + 2 A (1 + \[Lambda]^2))/(2 A)
a zatim izračunajmo svojstvene vrijednosti karakteristične jednadžbe u ft1.
In[15]:= Solve[kp1 == 0, \[Lambda]]
In[16]:= {sv1, sv2} = \[Lambda] /. %
Out[16]:=
{(-1 - Sqrt[1 + 4 A] - Sqrt[2 + 4 A - 16 A^2 + 2 Sqrt[1 + 4 A]])/(4 A),
(-1 - Sqrt[1 + 4 A] + Sqrt[2 + 4 A - 16 A^2 + 2 Sqrt[1 + 4 A]])/(4 A),
(-1 - Sqrt[1 + 4 A] + Sqrt[2 + 4 A - 16 A^2 + 2 Sqrt[1 + 4 A]])/(4 A)}
In[17]:= FullSimplify[sv1*sv2, A > 0]
Out[17] = 1
```

Vidimo da je proizvod svojstvenih vrijednosti u ftl jednak jedan.

Da bismo utvrdili jesu li svojstvene vrijednosti realni ili kompleksni brojevi, posmatrajmo znak diskriminante karakteristične jednadžbe **kp1**.

```
\begin{split} \text{In[18]:= disc1 = Discriminant[kp1, $\lambda$];} \\ & \text{disc1 = FullSimplify[disc1]} \\ \text{Out[18]= } \frac{1+2A-8A^2+\sqrt{1+4A}}{2A^2} \end{split}
```

Grafik diskriminante (20) pokazuje da ona može biti pozitivna ili negativna u zavisnosti od parametra A.

```
In[19]:= Plot[disc1, {A, 0, 4}, PlotRange -> {-5, 5}]
```

Odredimo nule diskriminante.

In[20]:= Solve[disc1 == 0, A]
Out[20]= {{A -> -(1/4)}, {A -> 3/4}}

Diskriminanta je nula u tim vrijednostima parametra A. Sa grafika (20) uočavamo da je diskriminanta negativna na intervalu $(\frac{3}{4}, +\infty)$, odnosno da su u tom intrvalu korijeni karakteristične jednadžbe kompleksni brojevi.

Razmotrimo slučaj kada je $A=\frac{3}{4}.$ Tada su obje svojstvene vrijednosti u ft
1 jednake -1.

Slika 20: Grafik diskriminante karakteristične jednadžbe $\tt kp1$

In[21]:= sv1 /. A -> 3/4
Out[21]= -1
In[22]:= sv2 /. A -> 3/4
Out[22]= -1

Fiksna tačka ft1 za $A = \frac{3}{4}$ je $-\frac{1}{2}$.

In[23]:= ft1 /. A -> 3/4 Out[23]= {-(1/2), -(1/2)}

Sada ćemo dati glavni zaključak u pogledu svojstvenih vrijednosti u smislu teorema (2.1). U tu svrhu, kreiraćemo grafik svojstvenih vrijednosti u fiksnoj tački ft1 u zavisnosti od parametra A.

```
In[24]:= eqn = kp1 == 0;
sol = Solve[eqn, \[Lambda]];
{sol1, sol2} = {\[Lambda]} /. %;
g1 = Plot[sol1, {A, 0, 3/4}, PlotRange -> {-3, 1}, PlotStyle -> Red];
g2 = Plot[sol2, {A, 0, 3/4}, PlotRange -> {-3, 1}, PlotStyle -> Green];
g3 = ListPlot[{{3/4, 0}}];
Show[g1, g2, g3]
```

Koristeći sve prethodno rečeno kao i grafik (21) zaključujemo da ako je $A < \frac{3}{4}$ onda postoje dvije realne svojstvene vrijednosti, jedna je po apsolutnoj vrijednosti manja od jedan (zeleni grafik) a druga je veća od jedan (crveni grafik). U tom slučaju, fiksna tačka koju smo označili sa **fp1** je *nestabilna*, i to *sedlasta tačka*.

Generišimo orbitu Lynessovog preslikavanja sa 100 tačaka, i pri tome uzmimo da je (1, 2) početna tačka. Uzet ćemo da je A = 2, i prikazati prvih deset članova orbite.

Slika 21: Grafik svojstvenih vrijednosti za ${\tt ft1}$ u zavisnosti odA

```
In[25]:= A = 2;
In[26]:= orb = Orbit[LynessMap, {1.0, 2.0}, 100];
In[27]:= Take[orb, {1, 10}]
Out[27]= {{1., 2.}, {2., 4.}, {4., 3.}, {3., 1.25}, {1.25, 1.08333},
{1.08333, 2.46667}, {2.46667, 4.12308}, {4.12308, 2.48233},
{2.48233, 1.08713}, {1.08713, 1.24364}}
```

Nacrtajmo grafik tačaka prethodne orbite sa 100 rješenja.

Slika 22: Grafik tačaka orbite Lynessove jednadžbe

Generišimo odgovarajući grafik vremenskog niza za prethodni grafik tačaka. Fazni portret pokazuje da je orbita sadržana u zatvorenoj krivoj. Fazni portret je generisan sljedećom Dynamica narednom:

```
In[28]:=
f1 = PhasePortrait[orb, PlotRange -> {{0, 5}, {0, 5}},Colors -> {Red}]
```

Sada ćemo generisati još dva fazna portreta za druge dvije orbite Lynesove jednadžne, i prikazati sva tri fazna portreta na jednom grafiku.

```
Univerzitet\ u\ Tuzli
```


Slika 23: Grafik vremenskog niza orbite Lynessove jednadžbe

Slika 24: Fazni portert orbite Lynessove jednadžbe

```
In[29]:= orb2 = Orbit[LynessMap, {1.0, 1.0}, 200];
In[30]:=
f2 = PhasePortrait[orb2, PlotRange -> {{0, 5}, {0, 5}}, Colors -> {Blue}];
In[31]:= orb3 = Orbit[LynessMap, {1.2, 2.5}, 200];
In[32]:=
f3 = PhasePortrait[orb3, PlotRange -> {{0, 5}, {0, 5}}, Colors -> {Green}];
In[33]:= Show[f1, f2, f3]
```

Generišimo grafik invarijante Lynessove diferentne jednadžba. Lynessove diferentne jednadžba je već definisana u paketa Dynamica.

In[34] := Lyness

Slika 25: Fazni porterti orbita Lynessove jednadžbe

Out[34] = x[1 + n] == (A + x[n])/x[-1 + n]

Za nalaženje invarijante, koristićemo Dynamica naredbu RationalInvariant[].

```
In[35]:= invLyness = RationalInvariant[Lyness]
Out[35] = c[1] + ((1 + A) c[8])/x[-1 + n] + c[8] x[-1 + n] + ((1 + A) c[8])/
x[n] + (A c[8])/(x[-1 + n] x[n]) + (c[8] x[-1 + n])/x[n] +
c[8] x[n] + (c[8] x[n])/x[-1 + n]c[1] + ((1 + A) c[8])/
x[-1 + n] + c[8] x[-1 + n] + ((1 + A) c[8])/
x[n] + (A c[8])/(x[-1 + n] x[n]) + (c[8] x[-1 + n])/x[n] +
 c[8] x[n] + (c[8] x[n])/x[-1 + n]
In[36]:= invLyness = invLyness /. {c[8] -> 1, c[1] -> A + 2}
Out[36] = 2 + A + (1 + A)/x[-1 + n] + x[-1 + n] + (1 + A)/x[n] + A/(n)
x[-1 + n] x[n]) + x[-1 + n]/x[n] + x[n] + x[n]/x[-1 + n]
In[37] := invLyness = invLyness /. {x[n] \rightarrow x, x[n - 1] \rightarrow y}
Out[37] = 2 + A + (1 + A)/x + x + (1 + A)/y + A/(x y) + x/y + y + y/x
In[38]:= invLyness = Factor[invLyness]
Out[38] = ((1 + x) (1 + y) (A + x + y))/(x y)
In[39] := A = 2.0;
In[40]:= Plot3D[invLyness, {x, 0.001, 5}, {y, 0.001, 5}, PlotRange -> {0, 100},
 PlotPoints -> 30]
```


Slika 26: Grafik invarijante Lynessove diferent
ne jednadžbe za ${\cal A}=2$

Kompleksno ponašanje Lynessove jednadžbe za različite vrijednost iparameta A može se vidjeti iz bifurkacionog dijagrama.

```
In[41]:= Clear[A]
In[42]:= BifurcationPlotND[LynessMap, {A, 0.95, 1.05}, {1.2, 1.0},
Steps -> 300, Iterates -> 150, FirstIt -> 400]
```


Slika 27: Bifurkacioni dijagram Lynessove jednadžbe za $A \in (0.95, 1.05)$

Ranije smo rekli, da je za A = 1 svako rješenje Lynessove jednadžbe periodično sa periodom pet, a vizualnu potvrdu toga nam daje bifurkafioni dijagram, kojeg ćemo uvećati u blizini tačke A = 1.

```
In[43]:= BifurcationPlotND[LynessMap, {A, 0.99, 1.01}, {1.2, 1.0},
Steps -> 300, Iterates -> 150, FirstIt -> 400]
```


Slika 28: Bifurkacioni dijagram Lynessove jednadžbe za $A \in (0.99, 1.01)$

Koristeći Dynamica funkciju PoincarePlot2D[] za generisanje Poincareovog grafika možemo također vizuelno pokazati da Lynessovo preslikavanje, sa parametrom A = 1, ima sva rješenja periodična sa periodom 5.

U Dynamica paketu je definisano i Lynessovo preslikavanje LynessMap[{x,y}].

```
In[44]:= PoincarePlot2D[LynessMap, 20]
```


Slika 29: Poincareov grafik Lynessovog preslikavanja za ${\cal A}=1$

Ovdje smo primijenili 20 puta PoincarePlot2D na početnu kružnicu da pokažemo evoluciju ove kružnicu pod Lynessovim preslikavanjem. Početna kružnica je definisana u centru sa koordinatama (1,1) i prečnikom 1. Na grafiku vidimo samo pet različitih oblika, zato što je svako rješenje periodično sa periodom pet.

Literatura

- [E] S. Elaydi, An Introduction to Difference Equations Third Edition, Springer, New York, 2005.
- [KM] M.R.S. Kulenović and O. Merino, Discrete Dynamical systems and Difference Equations with Mathematica, Chapman an Hall/CRC, Boca Raton - New York, 2002.
- [KL] M.R.S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations, Chapman/CRC, Boca Raton, 2002.
- [N] M. Nurkanović, Diferentne jednadžbe Teorija i primjene, Denfas, Tuzla, 2008.
- [KL] M.R.S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman and Hall/CRC, Boca Raton/London/New York/Washington, D.C., 2001.